

## Certificate of Calibration

We hereby certify that this product has been calibrated and found to be in accordance with the applicable SPECIFICATIONS and STANDARDS.

Accuracies of the standard equipment used in this calibration are traceable to the National Standards.

MECO METERS PVT. LTD.
Plot No. EL-60, MIDC Electronic Zone, TTC Industrial Area, Mahape, Navi Mumbai - 400710 (INDIA)
Tel : 0091-22-27673311-16, 27673300 (Board)
Fax : 0091-22-27673310, 27673330
E-mail : sales@mecoinst.com
Web : www.mecoinst.com

SR. NO. $\qquad$
CHECKED BY $\qquad$
DATE $\qquad$
MODEL NO. $\qquad$
$\qquad$


## TABLE OF CONTENTS

I. FEATURES .....  .2
II. PANEL DESCRIPTION ..... $\ldots 3$
III. OPERATING INSTRUCTIONS ..... 6
III.1. Measurenment of ACA ..... 6
III.1.1. True RMS value of AC Current .....  7
III.1.2. HOLD, MAX, MIN and.PEAKofAC Current ..... 7
III.1.3. Harmonics of AC Current in Magnitude (V) .....  8
III.1.4. Harmonics of AC Current in Percentage (\%) .....  8
III.1.5. Total Harmonic Distortion (\% THD-F) ..... 9
III.1.6. Crest Factor(C.F.) ..... 10
III.2. Measurement of AC Voltage ..... 11
III.2.1. True RMS value of AC Voltage ..... 11
III.2.3. HOLD, MAX, MIN and PEAK value of AC Voltage ..... 12
III.2.3. Harmonics of AC Voltage in Magnitude (V) ..... 13
III.2.4. Harmonics of AC Voltage in Percentage (\%) ..... 14
III.2.5. Total Harmonics Distortion (\% THD-F) ..... 14
III.2.6. Crest Factor (C.F.) ..... 15
III.3. Measurement of Single Phase AC Power Quality ..... 16
III.3.1. Single Phase AC Watt and Power Factor (PF) ..... 17
III.3.2. Apparent Power (VA, KVA) and Reactive Power (VAR, KVAR) ..... 17
III.3.3. Phase Angle (u) ..... 18
III.3.4. Horse Power (H.P) ..... 18
III.3.5. Energy (WH, or KWH) ..... 19
III. 4 Measurement ot the Balanced 3 Phase AC Power Quality ..... 20
III. 5 Measurement of the Balanced 3 Phase Sequence
III. 6 Measurement of Resistance and Continuity with Beeper ..... 23
IV. SET THE CT RATIO ..... 24
V. DISABLE AUTO-POWER-OFF ..... 24
VI. SPECIFICATIONS $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$ ..... 25
VII. BATTERY REPLACEMENT ..... 30
VIII. MAINTENANCE \& CLEANING ..... 31
a. Active (W, KW, HP), reactive (VAR, KVAR) and apparent (VA, KVA) power.
b. Power factor (PF), phase angle (u ), and energy (WH, KWH).
c. Non-interrupted AC current harmonic analysis.
d. 1 to $99^{\text {th }}$ order of harmonics at $2.0 \%$ basic accuracy.
e. Total harmonic distortion (\%THD-F) and crest factor (CF).
f. True RMS measurement of $V$ and $A$ at $0.5 \%$ basic accuracy.
g. Fast peak function ( 39 ms for $50 \mathrm{~Hz}, 33 \mathrm{~ms}$ for 60 Hz ).
h. Resistance and Continuity with Beeper Measurement of balanced $3 f$ power.
j. Measurement of balanced $3 f$ sequence.
k. Programmable CT ratio from 1 to 250.
I. Max, Min and data hold functions.
m. Active power in H.P.
n. Auto power off function in 30 minutes.


5
10. Secondary Digits

These digits display secondary function of measurement, such as power factor, reactive power, and the order of harmonics.
11. Symbols of Units

These are unit symbols for Current, voltage, and power. The nominal frequency ( 50 or 60 Hz ) of measurement is displayed above these unit symbols.
12. V Input Terminal

This terminal is used as input for voltage and power measurements.
13. COM Terminal

This terminal is used as common reference input.
14. Frequency Select Function

Press this button to select nominal frequency ( 50 or 60 Hz )
15. $\nabla$ button

It is used to decrement the order of hamonics or CT ratio. Holding this button when turning on the power will fix the measuring frequency at 50 or 60 Hz
16. $\square \subset$ Symbol of Current Transformer (CT)

If the CT ratio is not 1 , this symbol will be displayed in LCD.

## 3. OPERATING INSTRUCTIONS

### 3.1 Measurement of ACA

## NOTE:

1. Set the rotary switch at the A position.
2. The unit will measure and display signal frequency. If users wish to fixed the frquency 50 or 60 , users can hold the $\nabla$ button when turning on the power.
3. If the peak value of the input $A C$ current is greater than the maximum value of the range, then symbol of OL will be displayed.
NOTE : Whenever the rotary switch is set at new position, the CT ratio will be displayed first. If the CT ratio is not 1 , a symbol " $\square$ " will be shown in the LCD display for the measurment of $A$. The reading of current shown in LCD is equal to the true RMS value measured by the tester multiplied by $C T$ ratio $\left(A_{\text {LCD }}=A_{R M S} \times C T\right)$.


WARNING: Make sure that all the test leads are disconnected from the meter's terminals for current measurement. 8
3. 1.1. True RMS value of AC Current

a. Set the rotary switch at $A$ Then select the correct frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Press the trigger to open the jaw and fully enclose the conductor to be measured.
c. Read the measured value from the LCD display.
3. 1.2. HOLD, MAX, MIN and PEAK of AC Current.

a. Set the rotary switch at $A$. Then select the correct frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Press the trigger to open the jaw and fully endose the conductor to be measured.
c. The measured value from the LCD display. If the HQLD button is pressed, the symbol of "HOLD", "MAX", "MIN" or "PEAK" will be shown in LCD alternatively. And the value of the HOLD, MAX, MIN or PEAK function will be displayed in LCD alternatively.
d. To return to the display of current measurement, hold the HOLD button for more than 2 seconds.
NOTE : The PEAK function displays the maximum value of the input waveform. The sampling time for the PEAK function is $39 \mathrm{~ms}(50 \mathrm{~Hz})$ or $33 \mathrm{~ms}(60 \mathrm{~Hz})$. The HOLD, MAX, or MIN function displays the true RMS value.

## 3. 1.3. Harmonics of AC Current in Magnitude


a. Set the rotary switch at $A$. Then select the conect frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Press the trigger to open the jaw and fully enclose the conductor to be measured.
c. Press the FUNC button once. The symbols of "Harmonic" and "NO." will be shown in LCD. The n-th order (1 to 99) will be shown in the upper row digits.
d. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the order of harmonics in the upper row digits. The number will roll over when the maximum (99) or minimum (1) is reached.
3. 1.4. Harmonics of AC Current in Percentage (\%)

a. Set the rotary switch at " $A$ " position. Then select the correct frequency by pressing the $50 / 60 \mathrm{~Hz}$ button,
b. Press the trigger to open the jaw and fully enclose the conductor to be measured.
c. Press the FUNC button twice. The symbols of "Harmonic" and "NO." will be shown in LCD. The n-th order (1 to 99) will be shown in the upper row digits.
d. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the order of harmonics in the upper row digits. The number will roll over when the maximum (99) or minimum (1) is reached.
3. 1.5. Total Harmonic Distortion (\% THD-F)

a. Set the rotary switch at $A$. Then select the correct frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Press the trigger to open the jaw and fully enclose the conductor to be measured.
c. Press the FUNC button three times. The symbols of "THD" and "\%" will be shown in LCD. The total harmonic distortion in percentage with respect to the fundamental frequency ( 50 or 60 Hz ) will be measured and displayed.
$\%$ THD-F $=\left(\sqrt{ }\left(\mathrm{V}^{2}+\mathrm{V}^{2}+\ldots \mathrm{V} 49^{2}+\mathrm{V} 50^{2}\right) / \mathrm{V} 1\right) * 100$ Where,
V1: magnitude at the 50 or 60 Hz
V 2: magnitude at the second harmonics ...
V50: magnitude at the 99-th harmonics.
3. 1.6. Crest Factor (C.F.)

a. Set the rotary switch at $A$. Then select the correct frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Press the trigger to open the jaw and fully enclose the conductor to be measured.
c. Press the FUNC button four times. The symbols of C.F. will be shown in LCD. The crest factor (C.F.) will be measured and displayed. The crest factor (CF) is defined as following:
C.F. $=($ peak value $) /($ RMS value $)$

### 3.2 Measurement of AC Voltage

## NOTE :

1. The unit will measure and display signal frequency. If users wish to fixed the frquency at 50 or 60, users can hold the $\nabla$ button when turning on the power.
2. If the peak value of the input $A C$ voltage is greater than the maximum value of the range, then symbol of OL will be displayed.
NOTE : Whenever the rotary switch is set at a new position, the CT ratio will be displayed first. If the CT ratio is not 1 , a symbol of " $\square$ " will be shown in the LCD display.
WARNING:
Maximum input for ACV is 600. Do not attempt to take any voltage measurement that exceeds the limits. Exceeding the limits could cause electrical shock and damage to the clamp meter.


NOTE : The PEAK function displays the maximum value of the input wavefom. The sampling time for the PEAK function is 39 ms $(50 \mathrm{~Hz})$ or $33 \mathrm{~ms}(60 \mathrm{~Hz})$. The HOLD, MAX, or MIN function displays the true RMS value.
3. 2.3. Harmonics of AC Voltage in Magnitude (V)

a. Set the rotary switch at position V. Then select the correct fundamental frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Insert the test leads into the input jack. Connect the test prods of the test leads in PARALLEL to the circuit to be measured.
c. Press the FUNC button once. The symbols of "Harmonic" and "NO" will be shown in LCD. The n-th order (1 to 99) will be shown in the upper row digits.
d. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the order of harmonics in the upper row digits. The number will roll over when the maximum (99) or minimum (1) is reached.
a. Set the rotary switch at position V. Then select the correct fundamental frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Insert the test leads into the input jack. Connect the test prods of the test leads in PARALLEL to the circuit to be measured.
c. The measured value is displayed in the LCD display. If the HOLD button is pressed, the symbol of "HOLD", "MAX", "MIN" or "PEAK" will be shown in LCD alternatively. And the value of the HOLD, MAX, MIN or PEAK function will be displayed in LCD alternatively.
d. To return to the display of current measurement, hold the HOLD button for more than 2 seconds.

## 3. 2.4. Harmonics of AC Vollage in Percentage (\%)


a. Set the rotary switch at position V. Then select the correct fundamental frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Insert the test leads into the input jack. Connect the test prods of the test leads in PARALLEL to the circuit to be measured.
c. Press the FUNC button twice. The symbols of "Hamonic" and "NO" will be shown in LCD. The n-th order (1 to 99) will be shown in the upper row digits.
d. Press the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the order of harmonics in the upper row digits. The number will roll over when the maximum (99) or minimun (1) is reached.
3. 2.5. Total Harmonic Distortion (\% THD-F)

a. Set the rotary switch at position V . Then select the correct fundamental frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Insert the test leads into the input jack. Connect the test prod's of the test leads in PARALLEL to the circuit to be measured.
c. Press the FUNC button three times. The symbols of "THD" and "\%" will be shown in LCD. The total harmonic distortion in percentage with respect to the fundamental frequency ( 50 or 60 Hz ) will be measured and displayed.
$\%$ THD-F $=\left(\sqrt{ }\left(\mathrm{V} 2^{2}+\mathrm{V} 3^{2}+\ldots+\mathrm{V} 49^{2}+\mathrm{V} 50^{2}\right) / \mathrm{V} 1\right)$ * 100
Where,
V1: magnitude at the 50 or 60 Hz
V2: magnitude at the second harmonics
V50: magnitude at the 50-th harmonics.

## 3. 2.6. Crest Factor (C.F.)


a. Set the rotary switch at posilion V. Then select the correct fundamental frequency by pressing the $50 / 60 \mathrm{~Hz}$ button.
b. Insert the test leads into the input jack. Connect the test prods of the test leads in PARALLEL to the circuit to be measured.
c. Press the FUNC button four times. The symbols of C.F. will be shown in LCD. The crest factor (C.F.) will be measured and displayed. The crest factor (CF) is defined as following:
C.F. (Crest Factor) $=($ Peak Value) $/($ RMS Value $)$

## 3. 3 Measurement of Single Phase AC Power Quality

 NOTE:1. Set the rotary switch at the W position.
2. Select the correct fundamental frequency of current and voltage by pressing the $50 / 60 \mathrm{~Hz}$ button
3. If the peak value of the input $A C$ current or $A C$ voltage is greater than the maximum value of the range, then symbol of OL will be displayed.

## NOTE:

Whenever the rotary switch is set at a new position, the CT ratio will be displayed first. If the CT ratio is not 1 , a symbol of " $\square$ " will be shown in the LCD display for the measurement of W . The reading of current shown in LCD is equal to the W, VA, and VAR values measured by the tester multiplied by CT ratio $\left(\mathrm{W}_{\mathrm{LCD}}=\mathrm{W} x\right.$ $\left.C T, V A_{L C D}=V A \times C T, V A R_{L C D}=V A R \times C T, W_{L C D}=W H \times C T\right)$.


## 3. 3.1 Single Phase AC Watt and Power Factor (PF)


a. Connect the test leads to the voltage source in parallel with the load.
b. Clamp on one of the wire to the load. The current should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
d. Read the values of W or KW and PF shown on LCD. The unit of watt is automatically scaled.
3. 3.2. Apparent Power (VA, KVA) and Reactive Power (VAR, KVAR)

a. Connect the test leads to the voltage source in parallel wilh the load.
b. Clamp on one of the wire to the load. The current should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
d. The value of W, or KW and PF will be displayed in LCD.
e. Press the FUNC button once to display VA or KVA and VAR or KVAR. The unit is automatically scaled.

## 3. 3.3. Phase Angle (u)


a. Connect the test leads to the voltage source in parallel with the load.
b. Clamp on one of the wire to the laad. The current should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
e. The value of W, or KW will be displayed in LCD. The unit of watt is automatically scaled.
f. Press the FUNC button three times to display phase angle (u) from $180^{\circ}$ to $+180^{\circ}$.

NOTE : To display phase angle (u) from 0 to 360, hold the $\mathbf{\Delta}$ button, then turn the power on. Once the tester is turned on in this way, the tester will display phase angle from 0 to $360^{\circ}$ (when phase angle function is selected).
3. 3.4. Horse Power (H.P.)

a. Connect the test leads to the voltage source in parallel with the load.
b. Clamp on one of the wire to the load. The current should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
d. The vaiue of $W$, or KW and PF will be displayed in LCD. The unit of watt is automatically scaled.
e. Press the FUNC button four times to display power in the unit of HP.
3. 3.5. Energy (WH, or KWH)

a. Connect the test leads to the voltage source in parallel with the load.
b. Clamp on one of the wire to the load. The current should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
d. The values of W, or KW and PF will be displayed in LCD. The unit of watt is automatically scaled.
e. Press the FUNC button five times. A character of H is displayed in front of reading to indicate energy (WH or KWH).

### 3.4 Measurement of the Balanced 3 Phase AC Power Quality



a. Connect the black test lead to the voltage L3, and connect the red test lead to L1.
b. Clamp on one of the wire to L2. The cun ent should flow from the front of the tester to the side of the battery cover.
c. Set the rotary switch at the W position.
d. Press the $\boldsymbol{\Delta} 3^{f}$ button to select balanced $3 f$. Symbols of "3f 3W, $3 f 4 W$ and BAL" will be shown in LCD.
e. The value of W or KW and PF will be displayed in LCD. The unit of watt is automatically scaled.
f. If the FUNC button is pressed again, the apparent power (VA) and reactive power (VAR) will be shown in LCD.
g. To measure the phase angle and phase sequence, users can press the FUNC button again.
h. If the FUNC button is pressed again, the true power in the unit of Horse Power (HP) will be shown in LCD.
i. To measure the energy (WH), users can press the FUNC button again. The current energy (WH or KWH) will be shown in LCD.
NOTE : Users can also obtain the measurements of VA, VAR, Phase Angle, phase sequence, HP, and energy (WH) for balanced $3 f$ power system. The operations are the same as the measurements for the single-phase power system.
NOTE : The reading of current shown in LCD is equal to the W, VA, and VAR value measured by the tester multiplied by CT ratio $\left(W_{L C D}=W \times C T, V A_{L C D}=V A \times C T, V A R_{L C D}=V A R \times C T\right.$, $\left.\mathrm{WH}_{\mathrm{LCD}}=\mathrm{WH} \times \mathrm{CT}\right)$


24
a. Set the rotary switch at the W position
b. Connect the black test lead to the voltage L3, and connect the red test lead to L1.
c. Clamp on to the wire of L2. The current should flow from the front of the tester to the side of the battery cover.
d. Press the $\boldsymbol{\Delta} 3 f$ button to select 3 phase power system. A symbol of $3 f$ will be shown in LCD.
e. Press the FUNC button to select phase angle function. The LCD will show L123 to indicate the clockwise sequence in the upper row digits of LCD. Or the LCD will show L132 to indicate counter clockwise sequence.
3.6 Measurement of Resistance and Continuity with Beeper

a. Set the rotary switch at $V$
b. Insert the test leads into the input jack.
c. Connect the test prods of the test leads to the two ends of the resistor or circuit to be measured.
d. Read the measured value from the LCD display.
e. If the resistance is lower than 50 V , a beeping sound shall be heard.

## 4. SET THE CT RATIO

To set the CT ratio, hold the FUNC button, and then turn the power on. A symbol of " $\subset$ " will be shown in LCD. The default value of CT is 1 . To change the CT ratio, users can press the
$\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button to increment or decrement the value by 1, Holding the $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ button will speed up the process of incrementing or decrementing.
To exit the setting of CT ratio, press the FUNC button.

## 5. DISABLE AUTO-POWER-OFF

The tester has an auto-power-off function. The tester will turn the power off after power is turned on for 30 minutes. To disable the auto power off function, hold the FUNC button for more than 2 seconds. A beep sound will be heard to indicate that the auto power off function is disabled.
6. SPECIFICATIONS $\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

AC Watt ( 50 or 60 Hz, PF 0.5 to 1. CT = 1, Voltage > AC 5V, Current > AC 5A, and continuous waveform)

| Range | Resolution | Accuracy of Readings ${ }^{1}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $>20 \mathrm{~V} \&>20 \mathrm{~A}$ | $<20 \mathrm{~V}$ or $<20 \mathrm{~A}$ |
| $10.0-999.9 \mathrm{~W}$ | 0.1 W | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $1.000-9.999 \mathrm{KW}$ | 0.001 KW | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| 10.0099 .99 KW | 0.01 KW | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $100.0-999.9 \mathrm{KW}$ | 0.1 KW | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $1000-9999 \mathrm{KW}$ | 1 KW | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |

${ }^{1}$ For CTf 1, the accuracy in percentage is the same ( $\pm 2 \%$ ). But the additional wattage should be multiplied by the CT ratio.
For example, $\pm 2.0 \mathrm{~W}$ becomes $\pm 2.0 \mathrm{~W}$ * CT ratio $\pm 4.0 \mathrm{~W}$ becomes $\pm 4.0 \mathrm{~W}$ * CT ratio

AC Apparent Power (VA, from 0.000VA to 9999 KVA)

| Range | Resolution | Accuracy of Readings ${ }^{2}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $>20 \mathrm{~V} \&>20 \mathrm{~A}$ | $<20 \mathrm{~V}$ or $<20 \mathrm{~A}$ |
| $10.0-999.9 \mathrm{VA}$ | 0.1 VA | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $1.000-9.999 \mathrm{KVA}$ | 0.001 KVA | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $10.00-99.99 \mathrm{KVA}$ | 0.01 KVA | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $100.0-999.9 \mathrm{KVA}$ | 0.1 KVA | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |
| $1000-9999 \mathrm{KVA}$ | 1 KVA | $\pm 2 \% \pm 20 \mathrm{dgts}$ | $\pm 2 \% \pm 40 \mathrm{dgts}$ |

${ }^{2}$ For CTf 1, the accuracy in percentage is the same ( $\pm 2 \%$ ).
But the additional VA should be multiplied by the CT
ratio.
For example, $\pm 2.0 \mathrm{VA}$ becomes $\pm 2.0 \mathrm{VA} * \mathrm{CT}$ ratio

$$
\pm 4.0 \mathrm{VA} \text { becomes } \pm 4.0 \mathrm{VA} * \mathrm{CT} \text { ratio }
$$

AC Reactive Power (VAR, from 0.000 VAR to 9999 KVAR)

| Range | Resolution | Accuracy of Readings ${ }^{3}$ |  |
| :---: | :---: | :---: | :---: |
|  |  | $>20 \mathrm{~V} \&>20 \mathrm{~A}$ | $<20 \mathrm{~V}$ or $<20 \mathrm{~A}$ |
| $10.0-999.9 \mathrm{VAR}$ | 0.1 VAR | $\pm 2 \% \pm 30 \mathrm{dgts}$ | $\pm 3 \% \pm 40 \mathrm{dgts}$ |
| $1.000-9.999 \mathrm{KVAR}$ | 0.001 KVAR | $\pm 2 \% \pm 30 \mathrm{dgts}$ | $\pm 3 \% \pm 40 \mathrm{dgts}$ |
| $10.00-99.99 \mathrm{KVAR}$ | 0.01 KVAR | $\pm 2 \% \pm 30 \mathrm{dgts}$ | $\pm 3 \% \pm 40 \mathrm{dgts}$ |
| $100.0-999.9 \mathrm{KVAR}$ | 0.1 KVAR | $\pm 2 \% \pm 30 \mathrm{dgts}$ | $\pm 3 \% \pm 40 \mathrm{dgts}$ |
| $1000-9999 \mathrm{KVAR}$ | 1 KVAR | $\pm 2 \% \pm 30 \mathrm{dgts}$ | $\pm 3 \% \pm 40 \mathrm{dgts}$ |

${ }^{3}$ For CTf 1 , the accuracy in percentage is the same ( $\pm 2 \%$ ).
But the additional VAR should be multiplied by the CT ratio.
For example, $\pm 3.0 \mathrm{VAR}$ becomes $\pm 3.0 \mathrm{VAR}$ * CT ratio
$\pm 4.0 \mathrm{VAR}$ becomes $\pm 4.0 \mathrm{VAR}$ * CT ratio
Range of CT (Current Transformer) Ratio : 1 to 250

## H.P. (Horse Power)

1 H.P. = 746 W
AC Active Energy ( WH, or KWH, from 0 WH to 999,999
KWH) WH = W * Time (in hours)
28

AC Current ( 50 or 60 Hz , Auto Range, True RMS, Crest Factor < 4, CT=1)
(Overload Protection AC 2000A)

| Range | Resolution | Accuracy of Readings $^{4}$ |
| :---: | :---: | :---: |
| $10.0-1500.0 \mathrm{~A}$ | 0.01 A | $\pm 2 \% \pm 5 \mathrm{dgts}$ |

${ }^{4}$ For CT $\neq 1$, the accuracy in percentage is the same ( $\pm 2 \%$ ).
But the additional digits should be multiplied by the CT ratio.
For example, $\pm 5$ digits becomes $\pm 5$ digits * CT ratio
AC Voltage ( 50 or 60 Hz , Auto Range, True RMS, Crest Factor < 4, Input Impedance 10 MV , Overload Protection AC 800V)

| Range | Resolution | Accuracy of Readings |
| :---: | :---: | :---: |
| $10.0 \mathrm{~V}-600.0 \mathrm{~V}$ | 0.1 V | $\pm 0.5 \% \pm 5 \mathrm{dgts}$ |

Harmonics of AC Voltage in Percentage (1 to 99 order,
minimum voltage at the 50 or $60 \mathrm{~Hz}>\mathrm{AC} 80 \mathrm{~V}$. If the voltage is
0 at 50 or 60 Hz , all the percentage (\%) display is 0 .)

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $1-20^{\text {th }}$ | $0.1 \%$ | $\pm 2 \%$ |
| $21-49^{\text {th }}$ | $0.1 \%$ | $4 \%$ of reading $\pm 2.0 \%$ |
| $50-99^{\text {th }}$ | $0.1 \%$ | $6 \%$ of reading $\pm 2.0 \%$ |

Harmonics of AC Voltage in Magnitude (1 to 99 ${ }^{\text {th }}$ order,
minimum voltage at the 50 or $60 \mathrm{~Hz}>\mathrm{AC} 80 \mathrm{~V}$ )

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $1-20^{\text {th }}$ | $0.1 \%$ | $\pm 2.0 \% \pm 0.5 \mathrm{~V}$ |
| $21-49^{\text {th }}$ | $0.1 \%$ | $4 \%$ of reading $\pm 0.5 \mathrm{~V}$ |
| $50-99^{\text {th }}$ | $0.1 \%$ | $6 \%$ of reading $\pm 0.5 \mathrm{~V}$ |

Harmonics of AC Current in Percentage (1 to $99^{\text {th }}$ order, minimum current at the 50 or 60 Hz o 20 A . If the current is 0 at 50 or 60 Hz , all the percentage (\%) display is 0 .)

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $1-20^{\text {th }}$ | $0.1 \%$ | $\pm 2 \%$ |
| $21-49^{\text {th }}$ | $0.1 \%$ | $4 \%$ of reading $\pm 2.0 \%$ |
| $50-99^{\text {th }}$ | $0.1 \%$ | $6 \%$ of reading $\pm 2.0 \%$ |

Harmonics of AC Current in Magnitude (1 to 99 ${ }^{\text {th }}$ order, minimum current at the 50 or $60 \mathrm{~Hz}>20 \mathrm{~A}$ )

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $1-20^{\text {th }}$ | $0.1 \%$ | $\pm 2 \%$ of reading $\pm 0.4 \mathrm{~A}$ |
| $21-49^{\text {th }}$ | $0.1 \%$ | $\pm 4 \%$ of reading $\pm 0.4 \mathrm{~A}$ |
| $50-99^{\text {th }}$ | $0.1 \%$ | $\pm 6 \%$ of reading $\pm 0.4 \mathrm{~A}$ |

Power Factor (PF)

| Range | Resolution | Accuracy |  |
| :---: | :---: | :---: | :---: |
|  |  | $>20 \mathrm{~V} \&>20 \mathrm{~A}$ | $<20 \mathrm{~V}$ or $<20 \mathrm{~A}$ |
| $0.000-1.000$ | 0.001 | $\pm 0.04$ | $\pm 0.1$ |

Phase Angle (u)

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| -180 to $180^{\circ}$ | $0.1^{0}$ | $\pm 1^{0}$ |
| 0 to $360^{\circ}$ | $0.1^{0}$ | $\pm 1^{0}$ |

Total Harmonic Distortion (THD-F with respect to the 50 or 60 Hz , min. value at the 50 or $60 \mathrm{~Hz}>80 \mathrm{~V}$ and $>20 \mathrm{~A}, 1$ to 50 Harmonics. If the voltage or current is 0 at 50 or 60 Hz , all the percentage (\%) dispiay is 0)

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $0.0-20 \%$ | $0.1 \%$ | $\pm 2.0 \%$ |
| $20-100 \%$ | $0.1 \%$ | $\pm 6 \%$ of reading $\pm 1 \%$ |
| $100-999.9 \%$ | $0.1 \%$ | $\pm 10 \%$ of reading $\pm 1 \%$ |

Peak Value of AC Voltage (peak value $>5 \mathrm{~V}$ ) or AC Current (peak value > 20A)

| Range | Sampling Time | Accuracy of Reading |
| :---: | :---: | :---: |
| 50 Hz | 39 ms | $\pm 5 \% \pm 30$ digits |
| 60 Hz | 33 ms | $\pm 5 \% \pm 30$ digits |

Crest Factor (C.F.) of ACV (peak value $>5 \mathrm{~V}$ ) or ACA (peak value > 20A)

| Range | Resolution | Accuracy of Reading |
| :---: | :---: | :---: |
| $1.00-99.99$ | 0.01 | $\pm 5 \% \pm 30$ digits |

Resistance (V) and Continuity (Beep if less than 50V )

| Range | Resolution | Accuracy |
| :---: | :---: | :---: |
| $7.0-999.9 \mathrm{~V}$ | 0.1 V | $\pm 5 \mathrm{~V}$ |
| $1000-1200 \mathrm{~V}$ | 1 V | $\pm 5 \mathrm{~V}$ |

If reading is less than 7 V , it is displayed as 0 V
Frequency (RMS Value $>10 \mathrm{~V}$ ) or ACA (RMS value $>30 \mathrm{~A}$ )

| Range | Resolution | Accuracy of Readings |
| :---: | :---: | :---: |
| $45-65$ | 0.1 | $\pm 0.2 \mathrm{~Hz}$ |

## Indoors Use

| Conductor Size | : 55mm (approx.), $64 \times 24 \mathrm{~mm}$ (bus bar) |
| :---: | :---: |
| Battery Type | : two 1.5V SUM-3 |
| Display | : 4+4 digits LCD |
| Range Selection | : Auto |
| Overload Indication | : OL |
| Power Consumption | : 10mA (approx.) |
| Low battery Indication | B |
| Auto-Power-Off | : 30 minutes after power-on |
| Update Time | : 2 times/sec. (display) |
| No. Of Samples per Period | : 512 (voltage or current) 256 (power) |
| Operating Temperature | : $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ |
| Operating Humidity | : less than $85 \%$ relative |
| Altitude | : up to 2000M |
| Storage Temperature | : $-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ |
| Storage Humidity | : less than $75 \%$ relative |
| Dimension | : $210 \times 62 \times 35.6 \mathrm{~mm}$ (approx.) |
| Weight | : 640gms including battery (approx.) |
| Accessories | : Test leads x 1 <br> Carrying bag x 1 <br> Instruction manual $x 1$ <br> Batteries $1.5 \mathrm{~V} \times 2$ (installed) |
| Option | : Alligator clips |

32

## 7. BATTERY REPLACEMENT

When the low battery symbol is displayed on the LCD, replace the old batteries with two new batteries.

A. Turn the power off and remove the test leads from the clamp meter.
B. Remove the screw of the back cover.
C. Lift and remove the back cover.
D. Remove the old batteries.
E. Insert two new 1.5V SUM-3 batteries.
F. Place the back cover and secure the screw.

## 8. MAINTENANCE \& CLEANING

Servicing not covered in this manual should only be performed by qualified personnel.
Repairs should only be performed by qualified personnel.
Periodically wipe the case with a damp doth and detergent; do not use abrasives or solvents.

